Impact of Land Surface Initialization and Land-Atmosphere Coupling on the Prediction of the Indian Summer Monsoon with the CFSv2
نویسندگان
چکیده
The impact of initial land-surface states on monthly to seasonal prediction skill of the Indian summer monsoon (June–September) is investigated using a suite of hindcasts made with the Climate Forecast System version 2 (CFSv2) operational forecast model. The modern paradigm of land-atmosphere coupling is applied to quantify biases in different components of the land-atmosphere coupled system and their effect on systematic errors. Three sets of hindcasts are performed for the period spanning 1982–2009 initialized at the start of April, May, and June. For a particular initial date of a given year, one member (Control run) has the analyzed land initial state consistent with the atmosphere, sea ice and ocean states for that year; the other 27 members have land states taken from each of the remaining 27 years. There is significant improvement in the deterministic prediction skill of near surface temperature and soil moisture on monthly and seasonal time scales due to realistic land initial conditions. The improvement occurs in those areas where the land-atmosphere coupling is strongest. Improvements in the prediction skill of precipitation are confined to relatively small areas. The pattern of skill differences resembles patterns of land-atmosphere coupling strength, while biases in the representation of land-atmosphere coupling affect the skill of temperature and rainfall. The re-emergence of skill in temperature and precipitation toward the end of the season over northwest India within April and June IC hindcasts may be attributed to better simulation of the withdrawal phase of the monsoon as well as increased land-atmosphere coupling. For May IC hindcasts, increased skill in air temperature on the sub-seasonal time scales could also be due to other large-scale factors. Errors in the parameterization of radiation, convection, boundary layer processes, surface moisture fluxes, and the representation of vegetation contribute to decay in potential predictability and skill attributable to land initial conditions. Furthermore, incorrect representation of daily and sub-daily precipitation statistics over land also likely lead to errors in land-atmosphere coupling. Above all, the importance of accurate land surface initialization and land-atmosphere coupling in improving the Indian summer monsoon prediction on sub-seasonal to seasonal time scales is emphasized.
منابع مشابه
Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere rela...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کاملPrecipitation, Recycling, and Land Memory: An Integrated Analysis
A synthesis of several approaches to quantifying land–atmosphere interactions is presented. These approaches use data from observations or atmospheric reanalyses applied to atmospheric tracer models and stand-alone land surface schemes. None of these approaches relies on the results of general circulation model simulations. A high degree of correlation is found among these independent approache...
متن کاملMicroclimate land surface temperatures across urban land use/ land cover forms
Urbanization brings biophysical changes in the composition of the landscape. Such change has an impact on the thermal environment locally. The urban mosaic of land use and land cover is thus characteristically composed of local climate zones. The spatial variation in the land surface temperature across specific zone is studied for Bhopal city. The objective of the study was to understand how th...
متن کاملSimulations of the 2001 Indian Summer Monsoon Onset with a General Circulation Model
Land-atmosphere interactions, in terms of heat and moisture fluxes, are very important processes in the evolution of the Indian monsoon. A series of sensitivity experiments was conducted with a general circulation model of the atmosphere in order to study the influence of vegetation and soil characteristics on the onset of the Indian summer monsoon. Differences in model results are analysed, bo...
متن کامل